The paper presents the results of a study of the effect of the strain rate at various temperatures on the one-way and a two-way shape memory effects in a TiNi alloy. Preliminary high-strain rate deformation was carried out according to the Kola method for the split Hopkinson rod with a strain rate of about 10s. Preliminary quasistatic deformation was conducted using the Instron universal testing machine, with a strain rate of 10s. It is shown that the preliminary high-strain rate tension does not lead to an improvement in the functional properties of TiNi alloy. However, the preliminary high-strain rate compression can lead to improvement of functional properties of TiNi alloy. Presented results show that the values of the one-way shape memory effect and a two-way shape memory effect of the martensitic type after preliminary high-strain rate compression in the temperature range 20-60°C are higher than after quasistatic compression. The two-way shape memory effect of the austenitic type after preliminary high-strain rate compression is always greater than after quasistatic compression.