The designing of carbon-carbon composites (СCС) for friction use is an important problem, since the existing approaches are applicable only to technologies for obtaining materials using continuous fiber in the form of tapes and fabrics and are not suitable for products with chaotic reinforcement by short fibers, the use of which improves the mechanical characteristics of ССС both under static and dynamic influences. Also, this technology has economic advantages due to the use of cheaper raw materials and a significant reduction in the time of the molding stage in the presence of comparable physical, mechanical and frictional properties with CCC based on needle-punching and needle-piercing. To ensure the strength of discretely reinforced friction products, it is necessary to ensure the required effective length of the carbon fiber in the bundles distributed in the volume of the material, due to their evaluation by the degree of separation of the filaments. This article shows the dependence of the critical length of the bundle on the number of its fibers, from which it is found out that the critical length of the bundle sets the minimum threshold value at which the material is able to realize high strength characteristics. These ratios allow us to estimate the minimum necessary rate of separation of the bundle for a given fiber length. this will allow you to realize the maximum strength of the material, taking into account the technological limitations in the rate of separation. Models are also proposed that allow us to evaluate the technological prospects for the manufacture of discretely reinforced carbon-carbon materials for friction purposes and to predict their properties. The effect of additional reinforcement of the inter-joint spaces of the composite material on its wear resistance at high specific friction energies is shown