Deformation behavior of the graphen-nickel composite obtained at final temperatures | Mekhanika | kompozitsionnykh | materialov i konstruktsii
> Volume 25 > №4 / 2020 / Pages: 531-542

Deformation behavior of the graphen-nickel composite obtained at final temperatures

,

Abstract:

Composites, obtained by combining two or more materials often exhibit a number of unique properties. For last decades, composites based on carbon structures and metal nanoparticles are of great interest. In this work, the deformation behavior of the graphene-nickel composite at temperatures close to 0 K and elevated temperatures was studied by the molecular dynamics simulation. Modeling was carried out using a simple pairwise interatomic Morse potential. To obtain a composite based on crumpled graphene and nickel nanoparticles, hydrostatic compression is used at temperatures from 0 to 2000 K. In order to evaluate the strength of the obtained material, hydrostatic tension is applied to the structure. It is shown that hydrostatic compression at a temperature close to 0 K does not lead to the formation of a composite. Chemical bonds do not form between neighboring graphene flakes, and after stretching the resulting material returns to its original state. The deformation of the structure at 2000 K contributes to the formation of covalent bonds between adjacent structural elements and the formation of a single composite structure.

0