ПРИМЕНЕНИЕ РАСШИРЕННОЙ ТЕОРИИ ПЛАСТИН n-ГО ПОРЯДКА К РЕШЕНИЮ ЗАДАЧИ О ДИСПЕРСИИ ВОЛН В ГРАДИЕНТНО-НЕОДНОРОДНОМ СЛОЕ | Механика | композиционных | материалов и конструкций
> Том 25 > №2 / 2019 / Страницы: 240-258

ПРИМЕНЕНИЕ РАСШИРЕННОЙ ТЕОРИИ ПЛАСТИН n-ГО ПОРЯДКА К РЕШЕНИЮ ЗАДАЧИ О ДИСПЕРСИИ ВОЛН В ГРАДИЕНТНО-НЕОДНОРОДНОМ СЛОЕ

Аннотация:

Предложено решение дисперсионной задачи для градиентно-неоднородного упругого плоского слоя. Решение основано на расширенной теории пластин типа И.Н. Векуа – А.А. Амосова, обеспечивающей точное удовлетворение краевым условиям второго рода на лицевых поверхностях пластины в рамках двумерной модели любого порядка. Приведена вариационная формулировка задачи динамики неоднородной пластины, соответствующее теории N-го порядка, в переменных поля первого рода – коэффициентах разложения компонентов вектора перемещения по биортогональной системе базисных функций толщинной координаты. Двумерная модель пластины задана поверхностной плотностью функционала Лагранжа и неголономными уравнениями связей, следующими из силовых краевых условий на лицевых поверхностях пластины. На базе вариационной формулировки получены уравнения движения пластины, являющиеся обобщенными уравнениями Лагранжа второго рода двумерной континуальной системы. Спектральная задача для распространяющихся нормальных волн в плоском градиентно-неоднородном слое поставлена как стационарная задача для двух квадратичных форм с ограничениями, решаемая методом Голуба. Вычислены частоты запирания волн и формы нормальных мод в несимметричном слое со степенным распределением объемной доли структурных составляющих двухкомпонентного материала, а также распределения компонентов тензора напряжения, соответствующие формам нормальных волн. Проведен анализ сходимости приближенного решения по величинам частот запирания нормальных волн при различных показателях степенного закона распределения структурного состава. Показано, что при преобладании структурной составляющей с большим модулем упругости минимально необходимые порядки соответствуют однородному слою; формы нормальных мод достаточно близки к формам однородного слоя. При преобладании структурной составляющей с меньшим модулем упругости и образовании области локального повышения жесткости минимально необходимые порядки теории превышают таковые для однородного слоя на единицу для некоторых мод, различие форм распространяющихся мод существенно, особенно для высших фазовых частот. Распределения напряжений по толщине существенно несимметричны для высших частот.

0