2001
Страницы: 310-318

Уравнения и классификация свободных и собственных колебаний симметричных по толщине трехслойных пластин с трансверсально-мягким заполнителем.

,

Аннотация:

Для трехслойных пластин с трансверсально-мягким заполнителем и симметричным по толщине строением составлена разрешающая система восьми дифференциальных уравнений малых свободных и собственных колебаний для случая большой изменяемости параметров напряженно-деформированного состояния. Путем введения новых искомых неизвестных проведена их редукция к уравнениям, описывающим: 1) продольные формы движения, симметричные (синфазные) относительно срединной плоскости заполнителя ; 2) симметричные относительно поперечные формы движения (поперечные антифазные формы); 3) все остальные формы движения, включающие синфазные изгибные формы. Из составленных уравнений, как частный случай, выделены уравнения, описывающие свободные колебания трехслойной пластины без деформаций и искривлений внешних слоев. Для пластин с ортотропным заполнителем получены формулы, определяющие три частоты таких свободных колебаний. Одной из них является частота поперечных антифазных колебаний внешних слоев за счет деформаций поперечного обжатия заполнителя, постоянной вдоль пространственных координат, а двумя другими определяются частоты остальных антифазных плоскопараллельных колебаний внешних слоев в тангенциальных направлениях, связанных с деформациями поперечных сдвигов. Проанализированы вопросы о степени точности используемой двумерной математической модели, построенной в [1] для описания процессов динамического деформирования трехслойных пластин и оболочек.

1

Ключевые слова:

Ссылка:

Паймушин В.Н., Хусаинов В.Р. Уравнения и классификация свободных и собственных колебаний симметричных по толщине трехслойных пластин с трансверсально-мягким заполнителем. // Механика композиционных материалов и конструкций - 2001 - Том 7 - №3 - c: 310-318
Уважаемые авторы! В связи с включением журнала «Механика композиционных материалов и конструкций» в базу данных Russian Science Citation Index (RSCI) на платформе
125040, Россия, Москва, Ленинградский пр., 7
+7 495 946-18-06, mkmk@iam.ras.ru